Ultra-Wideband Automotive Radar
نویسنده
چکیده
A lot of progress has been made for automotive radar during the last years. There are two types of automotive radar; “long-range radar at 77GHz with a range capability up to 200m“ for automatic cruise control (ACC) and “short-range radar at 24/26 and 79GHz up to 30m“ for anti-collision. Long radar with narrow radiation beam enables a automobile to maintain a cruising distance, while short-range radar has recently attracted attention because of many applications such as pre-crush warning, stop-and-go operation and lane change assist. The short-range radar with a very broad lateral coverage has a few significant problems to be overcome such as target detection and clutter suppression. This is because the widely radiated radar echo contains not only automobile echo, but also unwanted echoes called clutter. It is actually not easy to detect a target echo in increased clutter. Ultra-wideband impulse-radio (UWB-IR) radar with high range-resolution has recently attracted much attention for automotive use, because it offers many applications such as pre-crush warning and lane change assist. The followings provide an overview of this chapter; 1. Section 2 introduces various radar systems for automotive use. It begins with a discussion of radar technologies such as Pulse Doppler, FM-CW and UWB-IR. 2. UWB-IR radar requires high speed A/D devices which can directly process the received nanosecond pulse. For example, A/D devices of several GS/s or more should be required for the UWB-IR radar with a bandwidth of 1GHz, which have not been available yet. The use of wideband may also cause unacceptable interference on existing narrowband systems. Therefore, some interference mitigation scheme may be required for the radar emission in the future. To solve these problems, a stepped-FM radar scheme is introduced in Section 3, which does not require high speed A/D device and provides the co-existence with exisiting narrowband systems. 3. Short range radar is expected to provide a wide coverage in azimuth angle. Therefore, increased clutter makes it difficult to detect automobile target accurately. The clutter can be classified from automobile by the Doppler, but it will not be applicable to the UWB-IR. In Section 4, a scheme is introduced which estimates the Doppler by using the time-trajectory of radar echo and the measurement results are presented. 4. Automotive radar is required to detect automobile accurately, but not to detect clutters falsely, even in complicated traffic conditions. In order to satisfy the requirement, a target discrimination scheme with range profile matching is introduced in Section 5 and the measurement results are presented. The results show that the automobile type can be discriminated.
منابع مشابه
Ultra Wideband Multiport Transceivers for Next Generation Wireless Personal Area Networks
Ultra wideband (UWB) communications is one of the most promising recent developments in wireless world for high-speed applications as shown in figure 1. In addition, the use of millimeter-waves has allowed in recent years the development of wireless communications: unlicensed short-range (57 – 64 GHz), outdoor semi-unlicensed point to point links (71 76 GHz, 81 86 GHz, and 92 95 GHz), automotiv...
متن کاملA 22–29-GHz UWB Pulse-Radar Receiver Front-End in 0.18- m CMOS
The design of a CMOS 22–29-GHz pulse-radar receiver (RX) front-end for ultra-wideband automotive radar sensors is presented. The chip includes a low-noise amplifier, in-phase/quadrature mixers, a quadrature voltage-controlled oscillator (QVCO), pulse formers, and baseband variable-gain amplifiers. Fabricated in a 0.18m CMOS process, the RX front-end chip occupies a die area of 3 mm . On-wafer m...
متن کاملParameter Optimization of UWB SRR System Performance in Weibull Clutter Environment
The objective of this paper is to optimize the parameters of non-coherent detectors such as coherent and non-coherent integration number for various non-coherent detectors such as square law detector, linear detector and logarithmic detector in weibull clutter environment for Ultra Wide Band Short Range Radar in Automotive applications. The detection performance of the detectors is analyzed for...
متن کاملA CFAR Circuit with Multiple Detection Cells for Automotive UWB Radars
Future high-resolution short-range automotive radar will have a higher false alarm probability than the conventional low-resolution radar has. In a high-resolution radar, the reception signal becomes sensitive to the difference between intended and unintended objects. However, automotive radars must distinguish targets from background objects that are the same order of size; it leads to an incr...
متن کاملPlanar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications
Planar antennas are common components in sensing applications due to their low cost, low profile and simple integration with systems. They can be used commonly at frequencies as high as 77 GHz and above, for example in automotive sensing. Also, new ultra-wideband communication systems operating around 60 GHz will heavily rely on planar antennas due to their unique properties. One special advant...
متن کامل